To begin with, as you know, GSC flies work as if they were a script which follows a flow like if it
was a code.

For example, here we have the first instruction of a GSAC

46 43 00 00 00 00 00 00 EOFC........
A1 A3 00 00 00 00] FF FF GSAC....

02 00 00 00 10 00 \ oo

00 00 4 00 00 0A 00 00 . 00 00

The type of instructions is defined by the first byte, the red one. In this case, since it’s 01 it
indicates the call of a function. Green is the ammount of parameters needed for the function
and blue is the ID of the function.

Inside the Code, we have this list

Function List

GacFunct...

ID

Function

d2 04000000480B02 GscFunct...

5 GscFunct...

GacFunct...

GacFunct...

GacFunct...

GacFunct...

The first one is the ID, as it is the same one marked in Blue in the first Screenshot, and the
second one is the function that will execute

This is the function it calls for:

As mentioned in the first screenshot, it’s using a parameter in which is the scenario ID, the
parameters are those which start with OA, 1A or 2A.

We also have the instructions which first byte isn’t 01 but rather 02

53 .41 43 /10 00 00 OO0 00 00 OO EE 02 00 0O
0Q FD FFj02 00 FC FF 00 FB FF |02 00 FE FF

00 00D CO 00 0O 00 OO0 00 0D OO 0D 0O 0D 00

A% AF 46 42 (10 00 Q0 Q0 o0 Q0 Q0 00 00 Q0 Q0

These functions are to call for another GSAC
Red: Instruction Type
Green: GSACID

For example, that GSAC calls for other 4 that are already in the GSAC which establish the
Battle’s Settings

There’s also an Instruction 03 but it remains unused (not seen an instance which is used), but
works very simmilar to function 02

And Last, we got the properties
46 4310 oo

41 4 10 00 0OC (03 00 00
OF 08 2 oo

02 00 0A O 0O (\ 00 00 00|08
oo 0A 1¢ i oo

A e e e ~ oo oome o oA
ol uu s o U2 LA B UL UL | UA

Red: Always 8
Green: ID of the property. It’s always assigned an letter
Blue: Amount of Parameters

Properties usually act as parameters that can be optional and can have parameters but
sometimes they only need to be there to serve it’s porpuse.

Now, let’s look at the list of Functions in Story Mode

46 43 00 00 00 00 00 00 BEOEC........
41 A3 00 00 Q0 7 00 00] FF GSAC....

02 00 . 00 00 00 10 00

o0 00 04 O3 00 00 DA 00 00 DA oo
0D 00 v 04 00 00 A 00 00 \ 0o

00 Q0 0A 04 Q0 Q0 QA D0 DO |0DA 3 (i]]

I'll mention them acording to the ID, which is marked in Blue in here.

Function 1: Stops the flow of the execution until it reaches to a determined time

For example: if we assigned an animation before the Function 1 and then another one after the
function, it’s not going to assign the second one until the time assigned for that function is
reached

In the screenshot above, we see that it’s using a float parameter, so after that function we have
an parameter 1A

OA: Int
1A: Float
2A: String

Since we know the ID and the amount of parameters we could even know how it would look in
hex. 01 + Amount of Parameters + Function ID ->01 01 01 00

Function 2: Simply uses an parameter to assign the ID of the scenario and with that assign the
Subtitles, LPS and ADX Files

Function 3: Does literally nothing, but it’s always the first one seen on an GSAC

00|10

00 (01

00 |1A

00

Qo

00

Qo

00

00 [1A BB 00 O
00 00
(i]] [

00

=

-

]

=
-

b

" | el |l |l
T X e

[
-

- —a
>> >

=

Function 4: Is similar to 3, but it serves a porpuse. It’s always found at the end of the GSAC and
it’s it’s porpuse is to assign again the camera of the Character and allows both Characters to
Move

0A OD 00 00 OE 00 01 02
0A 05 04 00 04 00 00 00
00 00 00 00 00 00 00 00 00 EOFC............

47 53 4 A 00 00 |BO 01 OO0 00|11 27 00 00 GSAC....°...."..

Function 5: Establishes the preset position of the characters on the Stage

This function is the same one you’d find when starting a Battle in Duel Mode

ocrmi{uint

ord position

Ord ro

Function 6: Turns off the effects, specifically the Auras, Ki Charging Auras and Camera Shakes

Function 8: (it’s not always in Order, 7 goes after) is the one that manages the Battle Events,
such as Clashes, Beam Struggles, ect.

dler (uint

It has 2 parameters. The 1st one is the ID of the Event (and which character is applied to) and
the second one is the character (used for (De)Transformations)

The first 2 despite not being named, it’s know what is they’re used for:

The 2 does the exact same thing, but it’s used on different situations, it’s like pressing the start
button

Maybe you might have noticed that when when adding an event on the first GSAC, it doesn’t
start until you press the Start Button. That’s because it’s assigned to the event of pressing the
Start Button (Case 1) Case 2 it’s the same, but it’s applied on the GSAC where the Battle Ends

List of Events:

1: Battle Start

2: Battle Finish

3: Stage Destruction (The Planet is Destroyed)

4: Clash

5, 6 and 7: Aerial Clash

8: Beam Struggle (First Blast 2 vs First Blast 2)

9: Beam Struggle (First Blast 2 vs Second Blast 2)
10: Beam Struggle (Second Blast 2 vs First Blast 2)
11: Beam Struggle (Second Blast 2 vs Second Blast 2)
12: Beam Struggle (Ultimate Blast vs Ultimate Blast)
16: Character Swap (To Slot 1)

17: Character Swap (To Slot 2)

18: Character Swap (To Slot 3)

19: Character Swap (To Slot 4)

20: Character Swap (To Slot 5)

21 and 22: Transformation

23: Fusion

24: Max Power!

25: Use First Blast 1

26: Use Second Blast 1

27: Use First Blast 2

28: Use Second Blast 2

29: Use Ultimate Blast

All these values are in Decimal, not Hex

Function 9: Indicates the end of the Battle. It has 1 parameter that indicated the result of the
Battle

-leType (uint

0: You Win! (K.0.)
1: You Lose! (K.O.)
2: You Win! (Ring Out)

3: You Lose! (Ring Out)

Function 7:

Here we see the use of the properties, they don’t have any parameters, but it does have
properties and can have an indefinite amount of properties this is the function that assigns the
links between and predetermined condition and an Audio or a GSAC

For example:

07 00 /1A A1 OO0 Q0 1A AC Q0 0Q0O/(1A AD 00O QO

00 00 1A AF 00 0O . 00 00 00

02 43 06 00 00 00 0A o0 Q00 08 77 00 00
00 0& QO n7 nn i 02 00 0A 5D 00O 00

A B1 00 NN DB ¢ 02 00 0OA 2 00 00 0A B2 00 0O
61 02 00 DA) 08 76 02 00

\ B> 00 0O 0A 18 00 £ 2 0A BS 00 0O
oD 00 00 oD 01 02 08 00

0A 05 Q0 00 QA Q04 00 00 0 Qo

We have 3 properties of type “a” and type “v”

Type “a” links to other GSAC while “v” links to the Audio files

Function 10: Is what assigns the Stage, Music, Time, Announcer and whatever activates Stages
Destruction or not

Once again, all of these Ids are in Decimal, that would be the Function 0A

Function 11: Assigns the amount of Characters of each Team

Function 12: Assigns a Character of the Team

Parameters: Player, Character, Costume, if it’s Battle Damaged, CPU level, Strategy Type Z-ltem,
HP and Z-ltems

As you can see in the Screenshot, in Normal Mode you add 6 to the Level, while on Hard Mode,
you add 9

Function 13:Doesn’t have parameters, only properties and all optional
All properties have 1 parameter

Function 13 is to establish data to a character on the player’s team

List of the Properties:

C: ID of the character on the team that will apply all this data (if it’s not set, then it will be
assigned to the current one).

h: Assign HP.

H: Add HP.

I: Assign Ki.

F: Add Ki.

b: Assign Blast Stocks.

B: Same as F “Add Ki” (It’s meant to be “Add Blast Stocks” but someone at Spike made an
oppsie)

0,1, 2, 3,4,5 and 6: Assign Z-Items, each number corresponds to a slot (0 is the first one and 6
is the Last.

Remember that the properties are in letters, so it wouldn’t be ID 0, but rather ID 0x30 (0 on
char)

Function 14: Same as 13, but for the CPU and 2 additional properties:
I (“L” in low caps, not an “i”): CPU Level

a: Seems broken, but it’s meant to be a supposed 8th Slot for a Z-Item, but in the end, it
replaces the first slot of the Z-Item of the next Team Member.

Function 15: Doesn’t have parameters, but it does have one property that can be repeated an
indefinite amount of times;

It links the Character Audios (Used to know which character is speaking or if the Subtitles are
White or Gray)

05 00 00 FB
. 00 00 00 |0A
& OO0 00 00
76 02 00
00 Q0 OB 7JE 2 00 0A 18 00 00 QA & 00 00
02 00| 0A 00 0A 16 00 00 76 02 00
00 00 0A 05 00 0B 76 02 Q0| 0A 20 00 0O
00 00 08 76 02 00 v 21 00 0O 00 00

02 00/|0A 22 00 0A 16 00 Q0 76 02 00

Function 16: Assigns the Rewards given uppon completion of the scenario. Has 15 parameters:
3 Z-Points Reward (one for each Difficulty)

3 Items

3 Stages

3 Characters

3 Story Mode Scenarios

Function 801: Assigns the Possition and Rotation of the Character

First parameter indicates to which character is applied, the following 3 parameters are
possition, while the last 3 are rotation.

Function 802: Same as 801, but it only assigns possition

s3ition{uint

ion {uint

Function 804: Makes the Character appear (In the case it was invisible)

Vigibility {uint

igibility{uint

Function 807 turns the Aura off

ra (uint

Function 808 turns Aura Charge
Function 809 turns it off

Function 810 activates that Ki Explosion when reaching Max Power

Function 901 assigns the Character Animation

It can have 3 properties

"t" has 1 parameter and assigns the speed of the animation

is to activate the loop of the animation

And "w" (property we’ll see on other functions) is the “wait” property, it indicates that the flow
stops there until the process ends, in this case, it would be used for stop there until the
animation is finished.

Function 902 has no parameters. When it’s present, it indicates that the player can move, this
function is unused since Function 4 already exists

Function 701 indicates what should be loaded on the Subtitles File

Function 1301 doesn’t really do anything, but it has 1 parameter, generally which is a string
attached to a comment (used during Debugging)

went {uint

It’s only used on the last Unused GSC Slots

Function 1302 establish the settings of the subtitles, it doesn’t have parameters, but it does
have several propreties:

First is the property "I" which indicates the region of the subtitles and has one parameter:
0:JP

1: USA

2: EUR

3: KOR (Unused)

"n" has one parameter: which indicates whatever the subtitles are white or grey.

"d" indicates the possition of the text on X and Y. They’re 2 type int parameters

"a" indicates the size of the text on X and Y. They’re 2 type float parameters

"s" is the scale and is a float parameter

"c" is the color of the Text. Has 4 parameters that correspon to the RGBA

p" is separation. Has 2 parameter, First one is separation between lines y and the second one
is between letters

"w" is the text alignment. Only has 1 Parameter:
0: Right

1: Center

2: Left

"T" is the type of letter. Only has 1 parameter. Value 2 indicates Bold which is the one used in
Story Mode, Which gives the outline.

"0" is the size of the outline in X and Y. They’re 2 type int parameters

And last is "C" is the color of the outline. Has 4 parameters that correspon to the RGBA

Function 1001 start a fade out

It has 1 parameter, which is the time that the fade out lasts, it can have the property “W”
which indicates that the fade out is white, it doesn’t have parameters, it can also have the wait
property “w”, which indicates the flow stops until the fade out ends

Function 1002 is the same, but with a fade in

Function 1003 forces to end the fade

Function 1201 habilitates the cutscene camaras

Has 3 parameters float for the possition and 3 more for rotation

Function 1202 doesn’t have them, but has properties

indicates another point for the camera to move the camera

That property has 7 parameters. First one is the speed from the previous possition to that
possition, the following 3 are for possition and the last 3 for rotation.

all 7 are floats, can also have the wait property, which indicate to stop the flow until the
camera finishes

Function 1203 restablishes the camera back to the player

DEf (uint

Unused since Function 4 exists

Function 1204 indicate Camera Shake

e LY e B & |

B

4

o

=]

LY I]

Has 1 parameter float, which indicates the force of the shake and can have the property "I"
which indicates loop to keep that shake

Function 1205 has no parameters. It stops the camera shake

MEE {uint

Function 1502 lowers the volume of the Music, has no parameters, but can have the property
wait, which stops the flow until the music ends

folume {uint

Function 1602 is an Audios from the 300 ADX Files from Story Mode. Has one parameter int
with the Audio ID

Audio{uint

Can have the property "h" which has 1 parameter that indicates the audios channel, since it
can reproduce 2 audios at the same time. It can also have the wait property, which stops the
flow until the audio ends.

Function 1603 is the same as before, but has 2 parameters instead of 1.
The first one is the player that reproduces the audio and the second one is the ID of the audio

Same properties as before, this one is for Character Audios and the other one for any Audio

Function 1701 has 1 parameter, which indicates a button. This function stops the flow until the
button assigned is pressed

