
To begin with, as you know, GSC flies work as if they were a script which follows a flow like if it

was a code.

For example, here we have the first instruction of a GSAC

The type of instructions is defined by the first byte, the red one. In this case, since it’s 01 it

indicates the call of a function. Green is the ammount of parameters needed for the function

and blue is the ID of the function.

Inside the Code, we have this list

The first one is the ID, as it is the same one marked in Blue in the first Screenshot, and the

second one is the function that will execute

This is the function it calls for:

As mentioned in the first screenshot, it’s using a parameter in which is the scenario ID, the

parameters are those which start with 0A, 1A or 2A.

We also have the instructions which first byte isn’t 01 but rather 02

These functions are to call for another GSAC

Red: Instruction Type

Green: GSAC ID

For example, that GSAC calls for other 4 that are already in the GSAC which establish the

Battle’s Settings

There’s also an Instruction 03 but it remains unused (not seen an instance which is used), but

works very simmilar to function 02

And Last, we got the properties

Red: Always 8

Green: ID of the property. It’s always assigned an letter

Blue: Amount of Parameters

Properties usually act as parameters that can be optional and can have parameters but

sometimes they only need to be there to serve it’s porpuse.

Now, let’s look at the list of Functions in Story Mode

I’ll mention them acording to the ID, which is marked in Blue in here.

Function 1: Stops the flow of the execution until it reaches to a determined time

For example: if we assigned an animation before the Function 1 and then another one after the

function, it’s not going to assign the second one until the time assigned for that function is

reached

In the screenshot above, we see that it’s using a float parameter, so after that function we have

an parameter 1A

0A: Int

1A: Float

2A: String

Since we know the ID and the amount of parameters we could even know how it would look in

hex. 01 + Amount of Parameters + Function ID -> 01 01 01 00

Function 2: Simply uses an parameter to assign the ID of the scenario and with that assign the

Subtitles, LPS and ADX Files

Function 3: Does literally nothing, but it’s always the first one seen on an GSAC

Function 4: Is similar to 3, but it serves a porpuse. It’s always found at the end of the GSAC and

it’s it’s porpuse is to assign again the camera of the Character and allows both Characters to

Move

Function 5: Establishes the preset position of the characters on the Stage

This function is the same one you’d find when starting a Battle in Duel Mode

Function 6: Turns off the effects, specifically the Auras, Ki Charging Auras and Camera Shakes

Function 8: (it’s not always in Order, 7 goes after) is the one that manages the Battle Events,

such as Clashes, Beam Struggles, ect.

It has 2 parameters. The 1st one is the ID of the Event (and which character is applied to) and

the second one is the character (used for (De)Transformations)

The first 2 despite not being named, it’s know what is they’re used for:

The 2 does the exact same thing, but it’s used on different situations, it’s like pressing the start

button

Maybe you might have noticed that when when adding an event on the first GSAC, it doesn’t

start until you press the Start Button. That’s because it’s assigned to the event of pressing the

Start Button (Case 1) Case 2 it’s the same, but it’s applied on the GSAC where the Battle Ends

List of Events:

1: Battle Start

2: Battle Finish

3: Stage Destruction (The Planet is Destroyed)

4: Clash

5, 6 and 7: Aerial Clash

8: Beam Struggle (First Blast 2 vs First Blast 2)

9: Beam Struggle (First Blast 2 vs Second Blast 2)

10: Beam Struggle (Second Blast 2 vs First Blast 2)

11: Beam Struggle (Second Blast 2 vs Second Blast 2)

12: Beam Struggle (Ultimate Blast vs Ultimate Blast)

16: Character Swap (To Slot 1)

17: Character Swap (To Slot 2)

18: Character Swap (To Slot 3)

19: Character Swap (To Slot 4)

20: Character Swap (To Slot 5)

21 and 22: Transformation

23: Fusion

24: Max Power!

25: Use First Blast 1

26: Use Second Blast 1

27: Use First Blast 2

28: Use Second Blast 2

29: Use Ultimate Blast

All these values are in Decimal, not Hex

Function 9: Indicates the end of the Battle. It has 1 parameter that indicated the result of the

Battle

0: You Win! (K.O.)

1: You Lose! (K.O.)

2: You Win! (Ring Out)

3: You Lose! (Ring Out)

Function 7:

Here we see the use of the properties, they don’t have any parameters, but it does have

properties and can have an indefinite amount of properties this is the function that assigns the

links between and predetermined condition and an Audio or a GSAC

For example:

We have 3 properties of type “a” and type “v”

Type “a” links to other GSAC while “v” links to the Audio files

Function 10: Is what assigns the Stage, Music, Time, Announcer and whatever activates Stages

Destruction or not

Once again, all of these Ids are in Decimal, that would be the Function 0A

Function 11: Assigns the amount of Characters of each Team

Function 12: Assigns a Character of the Team

Parameters: Player, Character, Costume, if it’s Battle Damaged, CPU level, Strategy Type Z-Item,

HP and Z-Items

As you can see in the Screenshot, in Normal Mode you add 6 to the Level, while on Hard Mode,

you add 9

Function 13: ….Doesn’t have parameters, only properties and all optional

All properties have 1 parameter

Function 13 is to establish data to a character on the player’s team

List of the Properties:

C: ID of the character on the team that will apply all this data (if it’s not set, then it will be

assigned to the current one).

h: Assign HP.

H: Add HP.

I: Assign Ki.

F: Add Ki.

b: Assign Blast Stocks.

B: Same as F “Add Ki” (It’s meant to be “Add Blast Stocks” but someone at Spike made an

oppsie)

0, 1, 2, 3, 4, 5 and 6: Assign Z-Items, each number corresponds to a slot (0 is the first one and 6

is the Last.

Remember that the properties are in letters, so it wouldn’t be ID 0, but rather ID 0x30 (0 on

char)

Function 14: Same as 13, but for the CPU and 2 additional properties:

l (“L” in low caps, not an “i”): CPU Level

a: Seems broken, but it’s meant to be a supposed 8th Slot for a Z-Item, but in the end, it

replaces the first slot of the Z-Item of the next Team Member.

Function 15: Doesn’t have parameters, but it does have one property that can be repeated an

indefinite amount of times;

It links the Character Audios (Used to know which character is speaking or if the Subtitles are

White or Gray)

The Property “v” as it’s seen here

Function 16: Assigns the Rewards given uppon completion of the scenario. Has 15 parameters:

3 Z-Points Reward (one for each Difficulty)

3 Items

3 Stages

3 Characters

3 Story Mode Scenarios

Function 801: Assigns the Possition and Rotation of the Character

First parameter indicates to which character is applied, the following 3 parameters are

possition, while the last 3 are rotation.

Function 802: Same as 801, but it only assigns possition

Function 803: Same as before, but only assigns rotation:

Function 804: Makes the Character appear (In the case it was invisible)

Function 805 makes the Character invisible

Function 806 activates the Aura

Function 807 turns the Aura off

Function 808 turns Aura Charge

Function 809 turns it off

Function 810 activates that Ki Explosion when reaching Max Power

Function 901 assigns the Character Animation

It can have 3 properties

"t" has 1 parameter and assigns the speed of the animation

"l" is to activate the loop of the animation

And "w" (property we’ll see on other functions) is the “wait” property, it indicates that the flow

stops there until the process ends, in this case, it would be used for stop there until the

animation is finished.

Function 902 has no parameters. When it’s present, it indicates that the player can move, this

function is unused since Function 4 already exists

Function 701 indicates what should be loaded on the Subtitles File

Function 702 is the same, but for LPS Files

Function 1301 doesn’t really do anything, but it has 1 parameter, generally which is a string

attached to a comment (used during Debugging)

It’s only used on the last Unused GSC Slots

Function 1302 establish the settings of the subtitles, it doesn’t have parameters, but it does

have several propreties:

First is the property "l" which indicates the region of the subtítles and has one parameter:

0: JP

1: USA

2: EUR

3: KOR (Unused)

"n" has one parameter: which indicates whatever the subtitles are white or grey.

"d" indicates the possition of the text on X and Y. They’re 2 type int parameters

"a" indicates the size of the text on X and Y. They’re 2 type float parameters

"s" is the scale and is a float parameter

"c" is the color of the Text. Has 4 parameters that correspon to the RGBA

"p" is separation. Has 2 parameter, First one is separation between lines y and the second one

is between letters

"w" is the text alignment. Only has 1 Parameter:

0: Right

1: Center

2: Left

"T" is the type of letter. Only has 1 parameter. Value 2 indicates Bold which is the one used in

Story Mode, Which gives the outline.

"O" is the size of the outline in X and Y. They’re 2 type int parameters

And last is "C" is the color of the outline. Has 4 parameters that correspon to the RGBA

Function 1001 start a fade out

It has 1 parameter, which is the time that the fade out lasts, it can have the property “W”

which indicates that the fade out is white, it doesn’t have parameters, it can also have the wait

property “w”, which indicates the flow stops until the fade out ends

Function 1002 is the same, but with a fade in

Function 1003 forces to end the fade

Function 1201 habilitates the cutscene camaras

Has 3 parameters float for the possition and 3 more for rotation

Function 1202 doesn’t have them, but has properties

"l" indicates another point for the camera to move the camera

That property has 7 parameters. First one is the speed from the previous possition to that

possition, the following 3 are for possition and the last 3 for rotation.

all 7 are floats, can also have the wait property, which indicate to stop the flow until the

camera finishes

Function 1203 restablishes the camera back to the player

Unused since Function 4 exists

Function 1204 indicate Camera Shake

Has 1 parameter float, which indicates the force of the shake and can have the property "l"

which indicates loop to keep that shake

Function 1205 has no parameters. It stops the camera shake

Function 1501 establishes a Music change

Function 1502 lowers the volume of the Music, has no parameters, but can have the property

wait, which stops the flow until the music ends

Function 1601 has one parameter int that indicates the ID of the Audio of the SeBattle

Function 1602 is an Audios from the 300 ADX Files from Story Mode. Has one parameter int

with the Audio ID

Can have the property "h" which has 1 parameter that indicates the audios channel, since it

can reproduce 2 audios at the same time. It can also have the wait property, which stops the

flow until the audio ends.

Function 1603 is the same as before, but has 2 parameters instead of 1.

The first one is the player that reproduces the audio and the second one is the ID of the audio

Same properties as before, this one is for Character Audios and the other one for any Audio

Function 1701 has 1 parameter, which indicates a button. This function stops the flow until the

button assigned is pressed

